course/videos/bleu_metric.ipynb (134 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/M05L1DhFqcw?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/M05L1DhFqcw?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_metric\n",
"\n",
"bleu = load_metric(\"bleu\")\n",
"predictions = [[\"I\", \"have\", \"thirty\", \"six\", \"years\"]]\n",
"references = [\n",
" [[\"I\", \"am\", \"thirty\", \"six\", \"years\", \"old\"], [\"I\", \"am\", \"thirty\", \"six\"]]\n",
"]\n",
"bleu.compute(predictions=predictions, references=references)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictions = [[\"I\", \"have\", \"thirty\", \"six\", \"years\"]]\n",
"references = [\n",
" [[\"I\", \"am\", \"thirty\", \"six\", \"years\", \"old\"], [\"I\", \"am\", \"thirty\", \"six\"]]\n",
"]\n",
"bleu.compute(predictions=predictions, references=references)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictions = [[\"I\", \"have\", \"thirty\", \"six\", \"years\"]]\n",
"references = [\n",
" [[\"I\", \"am\", \"thirty\", \"six\", \"years\", \"old\"], [\"I\", \"am\", \"thirty\", \"six\"]]\n",
"]\n",
"bleu.compute(predictions=predictions, references=references)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install sacrebleu"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sacrebleu = load_metric(\"sacrebleu\")\n",
"# SacreBLEU operates on raw text, not tokens\n",
"predictions = [\"I have thirty six years\"]\n",
"references = [[\"I am thirty six years old\", \"I am thirty six\"]]\n",
"sacrebleu.compute(predictions=predictions, references=references)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "What is the BLEU metric?",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}