course/videos/clm_processing.ipynb (143 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/ma1TrR7gE7I?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/ma1TrR7gE7I?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"from datasets import load_dataset, DatasetDict\n",
"\n",
"ds_train = load_dataset(\"huggingface-course/codeparrot-ds-train\", split=\"train\")\n",
"ds_valid = load_dataset(\"huggingface-course/codeparrot-ds-valid\", split=\"train\")\n",
"\n",
"raw_datasets = DatasetDict(\n",
" {\n",
" \"train\": ds_train,\n",
" \"valid\": ds_valid,\n",
" }\n",
")\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"huggingface-course/code-search-net-tokenizer\")\n",
"model = AutoModelForCausalLM.from_pretrained(\"huggingface-course/codeparrot-ds\")\n",
"batch = tokenizer([\"import numpy as np\"], return_tensors=\"pt\")\n",
"\n",
"text = \"import numpy as np\\n\"*20\n",
"context_length = 128"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"outputs = tokenizer(\n",
" text,\n",
" truncation=True,\n",
" max_length=16,\n",
" return_overflowing_tokens=True,\n",
" return_length=True,\n",
" )\n",
"\n",
"print(f\"Input chunk lengths: {(outputs['length'])}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize(element):\n",
" outputs = tokenizer(\n",
" element[\"content\"],\n",
" truncation=True,\n",
" max_length=context_length,\n",
" return_overflowing_tokens=True,\n",
" return_length=True,\n",
" )\n",
" input_batch = []\n",
" for length, input_ids in zip(outputs[\"length\"], outputs[\"input_ids\"]):\n",
" if length == context_length:\n",
" input_batch.append(input_ids)\n",
" return {\"input_ids\": input_batch}\n",
"\n",
"\n",
"tokenized_datasets = raw_datasets.map(\n",
" tokenize, batched=True, remove_columns=raw_datasets[\"train\"].column_names\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(input_ids=batch[\"input_ids\"], labels=batch[\"input_ids\"])\n",
"loss = output.loss"
]
}
],
"metadata": {
"colab": {
"name": "Data processing for Causal Language Modeling",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}