course/videos/datasets_and_dataframes.ipynb (148 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/tfcY1067A5Q?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/tfcY1067A5Q?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset = load_dataset(\"swiss_judgment_prediction\", \"all_languages\", split=\"train\")\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert the output format to pandas.DataFrame\n",
"dataset.set_format(\"pandas\")\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset.__getitem__(0)\n",
"\n",
"dataset.set_format(\"pandas\")\n",
"\n",
"dataset.__getitem__(0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = dataset.to_pandas()\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# How are languages distributed across regions?\n",
"df.groupby(\"region\")[\"language\"].value_counts()\n",
"\n",
"# Which legal area is most common?\n",
"df[\"legal area\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"# Load a pretrained tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"# Tokenize the `text` column\n",
"dataset.map(lambda x : tokenizer(x[\"text\"]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Reset back to Arrow format\n",
"dataset.reset_format()\n",
"# Now we can tokenize!\n",
"dataset.map(lambda x : tokenizer(x[\"text\"]))"
]
}
],
"metadata": {
"colab": {
"name": "Datasets + DataFrames = ❤️",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}