course/videos/datasets_overview_pt.ipynb (388 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/_BZearw7f0w?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/_BZearw7f0w?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (/home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
]
},
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['sentence1', 'sentence2', 'label', 'idx'],\n",
" num_rows: 3668\n",
" })\n",
" validation: Dataset({\n",
" features: ['sentence1', 'sentence2', 'label', 'idx'],\n",
" num_rows: 408\n",
" })\n",
" test: Dataset({\n",
" features: ['sentence1', 'sentence2', 'label', 'idx'],\n",
" num_rows: 1725\n",
" })\n",
"})"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from datasets import load_dataset\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
"raw_datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['sentence1', 'sentence2', 'label', 'idx'],\n",
" num_rows: 3668\n",
"})"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_datasets[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'idx': 6,\n",
" 'label': 0,\n",
" 'sentence1': 'The Nasdaq had a weekly gain of 17.27 , or 1.2 percent , closing at 1,520.15 on Friday .',\n",
" 'sentence2': 'The tech-laced Nasdaq Composite .IXIC rallied 30.46 points , or 2.04 percent , to 1,520.15 .'}"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_datasets[\"train\"][6]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'idx': [0, 1, 2, 3, 4],\n",
" 'label': [1, 0, 1, 0, 1],\n",
" 'sentence1': ['Amrozi accused his brother , whom he called \" the witness \" , of deliberately distorting his evidence .',\n",
" \"Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion .\",\n",
" 'They had published an advertisement on the Internet on June 10 , offering the cargo for sale , he added .',\n",
" 'Around 0335 GMT , Tab shares were up 19 cents , or 4.4 % , at A $ 4.56 , having earlier set a record high of A $ 4.57 .',\n",
" 'The stock rose $ 2.11 , or about 11 percent , to close Friday at $ 21.51 on the New York Stock Exchange .'],\n",
" 'sentence2': ['Referring to him as only \" the witness \" , Amrozi accused his brother of deliberately distorting his evidence .',\n",
" \"Yucaipa bought Dominick 's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998 .\",\n",
" \"On June 10 , the ship 's owners had published an advertisement on the Internet , offering the explosives for sale .\",\n",
" 'Tab shares jumped 20 cents , or 4.6 % , to set a record closing high at A $ 4.57 .',\n",
" 'PG & E Corp. shares jumped $ 1.63 or 8 percent to $ 21.03 on the New York Stock Exchange on Friday .']}"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_datasets[\"train\"][:5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'sentence1': Value(dtype='string', id=None),\n",
" 'sentence2': Value(dtype='string', id=None),\n",
" 'label': ClassLabel(num_classes=2, names=['not_equivalent', 'equivalent'], names_file=None, id=None),\n",
" 'idx': Value(dtype='int32', id=None)}"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_datasets[\"train\"].features"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b3c52a30cf04ee3a23967aa3e03ebaa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=3668.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05b0adf634ee4eedb107a5c9eb4e1d06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=408.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1d3817f39edb4190ae89b2a6cc0f7a2c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=1725.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"{'train': ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], 'validation': ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], 'test': ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids']}\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
"def tokenize_function(example):\n",
" return tokenizer(\n",
" example[\"sentence1\"], example[\"sentence2\"], padding=\"max_length\", truncation=True, max_length=128\n",
" )\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_function)\n",
"print(tokenized_datasets.column_names)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-2b2682faffe74c3f.arrow\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a982bbb10e9648fe94b80ab7f25e4ca0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-754363c6c40d803c.arrow\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
"def tokenize_function(examples):\n",
" return tokenizer(\n",
" examples[\"sentence1\"], examples[\"sentence2\"], padding=\"max_length\", truncation=True, max_length=128\n",
" )\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['attention_mask', 'input_ids', 'labels', 'token_type_ids'],\n",
" num_rows: 3668\n",
"})"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence1\", \"sentence2\"])\n",
"tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\n",
"tokenized_datasets = tokenized_datasets.with_format(\"torch\")\n",
"tokenized_datasets[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"small_train_dataset = tokenized_datasets[\"train\"].select(range(100))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Hugging Face Datasets overview (Pytorch)",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}