course/videos/debug_notebook.ipynb (289 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/rSPyvPw0p9k?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/rSPyvPw0p9k?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"raw_datasets = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_datasets[\"train\"][0][\"tokens\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_datasets[\"train\"][0][\"ner_tags\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ner_feature = raw_datasets[\"train\"].features[\"ner_tags\"]\n",
"ner_feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"label_names = ner_feature.feature.names\n",
"label_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"words = raw_datasets[\"train\"][0][\"tokens\"]\n",
"labels = raw_datasets[\"train\"][0][\"ner_tags\"]\n",
"line1 = \"\"\n",
"line2 = \"\"\n",
"for word, label in zip(words, labels):\n",
" full_label = label_names[label]\n",
" max_length = max(len(word), len(full_label))\n",
" line1 += word + \" \" * (max_length - len(word) + 1)\n",
" line2 += full_label + \" \" * (max_length - len(full_label) + 1)\n",
"\n",
"print(line1)\n",
"print(line2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"model_checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.is_fast"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inputs = tokenizer(raw_datasets[\"train\"][0][\"tokens\"], is_split_into_words=True)\n",
"inputs.tokens()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inputs.word_ids()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def align_labels_with_tokens(labels, word_ids):\n",
" new_labels = []\n",
" current_word = None\n",
" for word_id in word_ids:\n",
" if word_id != current_word:\n",
" # Start of a new word!\n",
" current_word = word_id\n",
" label = -100 if word_id is None else labels[word_id]\n",
" new_labels.append(label)\n",
" elif word_id is None:\n",
" # Special token\n",
" new_labels.append(-100)\n",
" else:\n",
" # Same word as previous token\n",
" label = labels[word_id]\n",
" # If the label is B-XXX we change it to I-XXX\n",
" if label % 2 == 1:\n",
" label += 1\n",
" new_labels.append(label)\n",
"\n",
" return new_labels"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"labels = raw_datasets[\"train\"][0][\"ner_tags\"]\n",
"word_ids = inputs.word_ids()\n",
"print(labels)\n",
"print(align_labels_with_tokens(labels, word_ids))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize_and_align_labels(examples):\n",
" tokenized_inputs = tokenizer(\n",
" examples[\"tokens\"], truncation=True, is_split_into_words=True\n",
" )\n",
" all_labels = examples[\"ner_tags\"]\n",
" new_labels = []\n",
" for i, labels in enumerate(all_labels):\n",
" word_ids = tokenized_inputs.word_ids(i)\n",
" new_labels.append(align_labels_with_tokens(labels, word_ids))\n",
"\n",
" tokenized_inputs[\"labels\"] = new_labels\n",
" return tokenized_inputs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenized_datasets = raw_datasets.map(\n",
" tokenize_and_align_labels,\n",
" batched=True,\n",
" remove_columns=raw_datasets[\"train\"].column_names,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"features = [tokenized_datasets[\"train\"][i] for i in range(8)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"batch = tokenizer.pad(features, return_tensors=\"pt\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%debug"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Using a debugger in a notebook",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}