course/videos/debug_training_pt.ipynb (338 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form" }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/L-WSwUWde1U?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#@title\n", "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/L-WSwUWde1U?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers and Datasets libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "from transformers import (\n", " AutoTokenizer,\n", " AutoModelForSequenceClassification,\n", " TrainingArguments,\n", " Trainer,\n", ")\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mnli\")\n", "model_checkpoint = \"distilbert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n", "\n", "def preprocess_function(examples):\n", " return tokenizer(examples[\"premise\"], examples[\"hypothesis\"], truncation=True)\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n", "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n", "args = TrainingArguments(\n", " \"distilbert-finetuned-mnli\",\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " learning_rate=2e-5,\n", " num_train_epochs=3,\n", " weight_decay=0.01,\n", ")\n", "metric = load_metric(\"glue\", \"mnli\")\n", "\n", "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=1)\n", " return metric.compute(\n", " predictions=predictions, references=labels\n", " )\n", "\n", "trainer = Trainer(\n", " model,\n", " args,\n", " train_dataset=raw_datasets[\"train\"],\n", " eval_dataset=raw_datasets[\"validation_matched\"],\n", " compute_metrics=compute_metrics,\n", ")\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trainer.train_dataset[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "from transformers import (\n", " AutoTokenizer,\n", " AutoModelForSequenceClassification,\n", " TrainingArguments,\n", " Trainer,\n", ")\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mnli\")\n", "model_checkpoint = \"distilbert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n", "\n", "def preprocess_function(examples):\n", " return tokenizer(examples[\"premise\"], examples[\"hypothesis\"], truncation=True)\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n", "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n", "args = TrainingArguments(\n", " \"distilbert-finetuned-mnli\",\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " learning_rate=2e-5,\n", " num_train_epochs=3,\n", " weight_decay=0.01,\n", ")\n", "metric = load_metric(\"glue\", \"mnli\")\n", "\n", "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=1)\n", " return metric.compute(\n", " predictions=predictions, references=labels\n", " )\n", "\n", "trainer = Trainer(\n", " model,\n", " args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation_matched\"],\n", " compute_metrics=compute_metrics,\n", ")\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for batch in trainer.get_train_dataloader():\n", " break" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "from transformers import (\n", " AutoTokenizer,\n", " AutoModelForSequenceClassification,\n", " TrainingArguments,\n", " Trainer,\n", ")\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mnli\")\n", "model_checkpoint = \"distilbert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n", "\n", "def preprocess_function(examples):\n", " return tokenizer(examples[\"premise\"], examples[\"hypothesis\"], truncation=True)\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n", "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n", "args = TrainingArguments(\n", " \"distilbert-finetuned-mnli\",\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " learning_rate=2e-5,\n", " num_train_epochs=3,\n", " weight_decay=0.01,\n", ")\n", "metric = load_metric(\"glue\", \"mnli\")\n", "\n", "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=1)\n", " return metric.compute(\n", " predictions=predictions, references=labels\n", " )\n", "\n", "trainer = Trainer(\n", " model,\n", " args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation_matched\"],\n", " compute_metrics=compute_metrics,\n", " tokenizer=tokenizer,\n", ")\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for batch in trainer.get_train_dataloader():\n", " break\n", "\n", "outputs = trainer.model.cpu()(**batch)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.num_labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "from transformers import (\n", " AutoTokenizer,\n", " AutoModelForSequenceClassification,\n", " TrainingArguments,\n", " Trainer,\n", ")\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mnli\")\n", "model_checkpoint = \"distilbert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n", "\n", "def preprocess_function(examples):\n", " return tokenizer(examples[\"premise\"], examples[\"hypothesis\"], truncation=True)\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n", "model = AutoModelForSequenceClassification.from_pretrained(\n", " model_checkpoint, num_labels=3\n", ")\n", "args = TrainingArguments(\n", " \"distilbert-finetuned-mnli\",\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " learning_rate=2e-5,\n", " num_train_epochs=3,\n", " weight_decay=0.01,\n", ")\n", "metric = load_metric(\"glue\", \"mnli\")\n", "\n", "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=1)\n", " return metric.compute(\n", " predictions=predictions, references=labels\n", " )\n", "\n", "trainer = Trainer(\n", " model,\n", " args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation_matched\"],\n", " compute_metrics=compute_metrics,\n", " tokenizer=tokenizer,\n", ")\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for batch in trainer.get_train_dataloader():\n", " break\n", "\n", "outputs = trainer.model.cpu()(**batch)\n", "loss = outputs.loss\n", "loss.backward()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trainer.create_optimizer()\n", "trainer.optimizer.step()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "name": "Debugging the Training Pipeline (PyTorch)", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }