course/videos/debug_training_tf.ipynb (157 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/N9kO52itd0Q?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/N9kO52itd0Q?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset, load_metric\n",
"from transformers import (\n",
" AutoTokenizer,\n",
" TFAutoModelForSequenceClassification,\n",
")\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mnli\")\n",
"\n",
"model_checkpoint = \"distilbert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n",
"\n",
"\n",
"def preprocess_function(examples):\n",
" return tokenizer(examples[\"premise\"], examples[\"hypothesis\"], truncation=True)\n",
"\n",
"\n",
"tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n",
"model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_dataset = tokenized_datasets[\"train\"].to_tf_dataset(\n",
" columns=[\"input_ids\", \"labels\"], batch_size=16, shuffle=True\n",
")\n",
"\n",
"validation_dataset = tokenized_datasets[\"validation_matched\"].to_tf_dataset(\n",
" columns=[\"input_ids\", \"labels\"], batch_size=16, shuffle=True\n",
")\n",
"\n",
"model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n",
"\n",
"model.compile(loss=\"sparse_categorical_crossentropy\", optimizer='adam')\n",
"\n",
"model.fit(train_dataset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for batch in train_dataset:\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.compile(optimizer='adam')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = TFAutoModelForSequenceClassification.from_pretrained(\n",
" model_checkpoint,\n",
" num_labels=3\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.compile(optimizer='adam')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Debugging the Training Pipeline (TensorFlow)",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}