course/videos/dynamic_padding.ipynb (202 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/7q5NyFT8REg?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/7q5NyFT8REg?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (/home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-2b2682faffe74c3f.arrow\n",
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-78d79fc323f0156c.arrow\n",
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-801914374fb3c6ca.arrow\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
"checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
"def tokenize_function(examples):\n",
" return tokenizer(\n",
" examples[\"sentence1\"], examples[\"sentence2\"], padding=\"max_length\", truncation=True, max_length=128\n",
" )\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence1\", \"sentence2\"])\n",
"tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\n",
"tokenized_datasets = tokenized_datasets.with_format(\"torch\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([16, 128])\n",
"torch.Size([16, 128])\n",
"torch.Size([16, 128])\n",
"torch.Size([16, 128])\n",
"torch.Size([16, 128])\n",
"torch.Size([16, 128])\n",
"torch.Size([16, 128])\n"
]
}
],
"source": [
"from torch.utils.data import DataLoader\n",
"\n",
"train_dataloader = DataLoader(tokenized_datasets[\"train\"], batch_size=16, shuffle=True)\n",
"\n",
"for step, batch in enumerate(train_dataloader):\n",
" print(batch[\"input_ids\"].shape)\n",
" if step > 5:\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (/home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-8174fd92eed0af98.arrow\n",
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-8c99fb059544bc96.arrow\n",
"Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-e625eb72bcf1ae1f.arrow\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
"checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
"def tokenize_function(examples):\n",
" return tokenizer(examples[\"sentence1\"], examples[\"sentence2\"], truncation=True)\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence1\", \"sentence2\"])\n",
"tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\n",
"tokenized_datasets = tokenized_datasets.with_format(\"torch\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([16, 83])\n",
"torch.Size([16, 75])\n",
"torch.Size([16, 81])\n",
"torch.Size([16, 75])\n",
"torch.Size([16, 80])\n",
"torch.Size([16, 81])\n",
"torch.Size([16, 81])\n"
]
}
],
"source": [
"from torch.utils.data import DataLoader\n",
"from transformers import DataCollatorWithPadding\n",
"\n",
"data_collator = DataCollatorWithPadding(tokenizer)\n",
"train_dataloader = DataLoader(\n",
" tokenized_datasets[\"train\"], batch_size=16, shuffle=True, collate_fn=data_collator\n",
")\n",
"\n",
"for step, batch in enumerate(train_dataloader):\n",
" print(batch[\"input_ids\"].shape)\n",
" if step > 5:\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "What is dynamic padding?",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}