course/videos/fast_tokenizers.ipynb (148 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/g8quOxoqhHQ?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/g8quOxoqhHQ?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mnli\")\n",
"raw_datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"fast_tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n",
"\n",
"def tokenize_with_fast(examples):\n",
" return fast_tokenizer(\n",
" examples[\"premise\"], examples[\"hypothesis\"], truncation=True\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"slow_tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\", use_fast=False)\n",
"\n",
"def tokenize_with_slow(examples):\n",
" return fast_tokenizer(\n",
" examples[\"premise\"], examples[\"hypothesis\"], truncation=True\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%time tokenized_datasets = raw_datasets.map(tokenize_with_fast)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%time tokenized_datasets = raw_datasets.map(tokenize_with_slow)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%time tokenized_datasets = raw_datasets.map(tokenize_with_fast, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%time tokenized_datasets = raw_datasets.map(tokenize_with_slow, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Why are fast tokenizers called fast?",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}