course/videos/load_custom_dataset.ipynb (148 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/HyQgpJTkRdE?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/HyQgpJTkRdE?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"local_csv_dataset = load_dataset(\"csv\", data_files=\"winequality-white.csv\", sep=\";\")\n",
"local_csv_dataset[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load the dataset from the URL directly\n",
"dataset_url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv\"\n",
"remote_csv_dataset = load_dataset(\"csv\", data_files=dataset_url, sep=\";\")\n",
"remote_csv_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset_url = \"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\"\n",
"text_dataset = load_dataset(\"text\", data_files=dataset_url)\n",
"text_dataset[\"train\"][:5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset_url = \"https://raw.githubusercontent.com/hirupert/sede/main/data/sede/train.jsonl\"\n",
"json_lines_dataset = load_dataset(\"json\", data_files=dataset_url)\n",
"json_lines_dataset[\"train\"][:2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset_url = \"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json\"\n",
"json_dataset = load_dataset(\"json\", data_files=dataset_url, field=\"data\")\n",
"json_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = \"https://rajpurkar.github.io/SQuAD-explorer/dataset/\"\n",
"data_files = {\"train\": f\"{url}train-v2.0.json\", \"validation\": f\"{url}dev-v2.0.json\"}\n",
"json_dataset = load_dataset(\"json\", data_files=data_files, field=\"data\")\n",
"json_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Loading a custom dataset",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}