course/videos/mlm_processing.ipynb (156 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/8PmhEIXhBvI?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/8PmhEIXhBvI?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"raw_datasets = load_dataset(\"wikitext\", \"wikitext-2-raw-v1\")\n",
"raw_datasets[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer\n",
"\n",
"raw_datasets = load_dataset(\"imdb\")\n",
"raw_datasets = raw_datasets.remove_columns(\"label\")\n",
"\n",
"model_checkpoint = \"distilbert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n",
"context_length = 128\n",
"\n",
"def tokenize_pad_and_truncate(texts):\n",
" return tokenizer(texts[\"text\"], truncation=True, padding=\"max_length\", max_length=context_length)\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_pad_and_truncate, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize_and_chunk(texts):\n",
" return tokenizer(\n",
" texts[\"text\"], truncation=True, max_length=context_length,\n",
" return_overflowing_tokens=True\n",
" )\n",
"\n",
"tokenized_datasets = raw_datasets.map(\n",
" tokenize_and_chunk, batched=True, remove_columns=[\"text\"]\n",
")\n",
"\n",
"len(raw_datasets[\"train\"]), len(tokenized_datasets[\"train\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize_and_chunk(texts):\n",
" all_input_ids = []\n",
" for input_ids in tokenizer(texts[\"text\"])[\"input_ids\"]:\n",
" all_input_ids.extend(input_ids)\n",
" all_input_ids.append(tokenizer.eos_token_id)\n",
" \n",
" chunks = []\n",
" for idx in range(0, len(all_input_ids), context_length):\n",
" chunks.append(all_input_ids[idx: idx + context_length])\n",
" return {\"input_ids\": chunks}\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_and_chunk, batched=True, remove_columns=[\"text\"])\n",
"\n",
"len(raw_datasets[\"train\"]), len(tokenized_datasets[\"train\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import DataCollatorForLanguageModeling\n",
"\n",
"data_collator = DataCollatorForLanguageModeling(tokenizer, mlm_probability=0.15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Data processing for Masked Language Modeling",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}