course/videos/model_api_pt.ipynb (281 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form" }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/AhChOFRegn4?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#@title\n", "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/AhChOFRegn4?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers and Datasets libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of the model checkpoint at bert-base-cased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias']\n", "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "<class 'transformers.models.bert.modeling_bert.BertModel'>\n", "<class 'transformers.models.gpt2.modeling_gpt2.GPT2Model'>\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Some weights of the model checkpoint at facebook/bart-base were not used when initializing BartModel: ['final_logits_bias']\n", "- This IS expected if you are initializing BartModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing BartModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "<class 'transformers.models.bart.modeling_bart.BartModel'>\n" ] } ], "source": [ "from transformers import AutoModel\n", "\n", "bert_model = AutoModel.from_pretrained(\"bert-base-cased\")\n", "print(type(bert_model))\n", "\n", "gpt_model = AutoModel.from_pretrained(\"gpt2\")\n", "print(type(gpt_model))\n", "\n", "bart_model = AutoModel.from_pretrained(\"facebook/bart-base\")\n", "print(type(bart_model))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'transformers.models.bert.configuration_bert.BertConfig'>\n", "<class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'>\n", "<class 'transformers.models.bart.configuration_bart.BartConfig'>\n" ] } ], "source": [ "from transformers import AutoConfig\n", "\n", "bert_config = AutoConfig.from_pretrained(\"bert-base-cased\")\n", "print(type(bert_config))\n", "\n", "gpt_config = AutoConfig.from_pretrained(\"gpt2\")\n", "print(type(gpt_config))\n", "\n", "bart_config = AutoConfig.from_pretrained(\"facebook/bart-base\")\n", "print(type(bart_config))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'transformers.models.bert.configuration_bert.BertConfig'>\n" ] } ], "source": [ "from transformers import BertConfig\n", "\n", "bert_config = BertConfig.from_pretrained(\"bert-base-cased\")\n", "print(type(bert_config))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'>\n" ] } ], "source": [ "from transformers import GPT2Config\n", "\n", "gpt_config = GPT2Config.from_pretrained(\"gpt2\")\n", "print(type(gpt_config))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'transformers.models.bart.configuration_bart.BartConfig'>\n" ] } ], "source": [ "from transformers import BartConfig\n", "\n", "bart_config = BartConfig.from_pretrained(\"facebook/bart-base\")\n", "print(type(bart_config))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "BertConfig {\n", " \"architectures\": [\n", " \"BertForMaskedLM\"\n", " ],\n", " \"attention_probs_dropout_prob\": 0.1,\n", " \"gradient_checkpointing\": false,\n", " \"hidden_act\": \"gelu\",\n", " \"hidden_dropout_prob\": 0.1,\n", " \"hidden_size\": 768,\n", " \"initializer_range\": 0.02,\n", " \"intermediate_size\": 3072,\n", " \"layer_norm_eps\": 1e-12,\n", " \"max_position_embeddings\": 512,\n", " \"model_type\": \"bert\",\n", " \"num_attention_heads\": 12,\n", " \"num_hidden_layers\": 12,\n", " \"pad_token_id\": 0,\n", " \"position_embedding_type\": \"absolute\",\n", " \"transformers_version\": \"4.7.0.dev0\",\n", " \"type_vocab_size\": 2,\n", " \"use_cache\": true,\n", " \"vocab_size\": 28996\n", "}\n", "\n" ] } ], "source": [ "from transformers import BertConfig\n", "\n", "bert_config = BertConfig.from_pretrained(\"bert-base-cased\")\n", "print(bert_config)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import BertConfig, BertModel\n", "\n", "bert_config = BertConfig.from_pretrained(\"bert-base-cased\")\n", "bert_model = BertModel(bert_config)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import BertConfig, BertModel\n", "\n", "bert_config = BertConfig.from_pretrained(\"bert-base-cased\")\n", "bert_model = BertModel(bert_config)\n", "\n", "# Training code\n", "\n", "bert_model.save_pretrained(\"my_bert_model\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "name": "Instantiate a Transformers model (PyTorch)", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }