course/videos/offset_mapping.ipynb (101 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/3umI3tm27Vw?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/3umI3tm27Vw?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n",
"print(tokenizer(\"Let's talk about tokenizers superpowers.\")[\"input_ids\"])\n",
"print(tokenizer(\"Let's talk about tokenizers superpowers.\")[\"input_ids\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoding = tokenizer(\"Let's talk about tokenizers superpowers.\")\n",
"print(encoding.tokens())\n",
"print(encoding.word_ids())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoding = tokenizer(\n",
" \"Let's talk about tokenizers superpowers.\",\n",
" return_offsets_mapping=True\n",
")\n",
"print(encoding.tokens())\n",
"print(encoding[\"offset_mapping\"])"
]
}
],
"metadata": {
"colab": {
"name": "Fast tokenizer superpowers",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}