course/videos/push_to_hub_pt.ipynb (259 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form" }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Zh0FfmVrKX0?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#@title\n", "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Zh0FfmVrKX0?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers and Datasets libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "\n", "raw_datasets = load_dataset(\"glue\", \"cola\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_datasets" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer\n", "\n", "model_checkpoint = \"bert-base-cased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def preprocess_function(examples):\n", " return tokenizer(examples[\"sentence\"], truncation=True)\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoModelForSequenceClassification\n", "\n", "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from datasets import load_metric\n", "\n", "metric = load_metric(\"glue\", \"cola\")\n", "\n", "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=-1)\n", " return metric.compute(predictions=predictions, references=labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import TrainingArguments\n", "\n", "args = TrainingArguments(\n", " \"bert-fine-tuned-cola\",\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " learning_rate=2e-5,\n", " num_train_epochs=3,\n", " weight_decay=0.01,\n", " push_to_hub=True,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import Trainer\n", "\n", "trainer = Trainer(\n", " model,\n", " args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation\"],\n", " compute_metrics=compute_metrics,\n", " tokenizer=tokenizer,\n", ")\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trainer.push_to_hub(\"End of training\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pusing components individually" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "repo_name = \"bert-fine-tuned-cola\"\n", "\n", "model.push_to_hub(repo_name)\n", "tokenizer.push_to_hub(repo_name)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "label_names = raw_datasets[\"train\"].features[\"label\"].names\n", "label_names" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.config.id2label = {str(i): lbl for i, lbl in enumerate(label_names)}\n", "model.config.label2id = {lbl: str(i) for i, lbl in enumerate(label_names)}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "repo_name = \"bert-fine-tuned-cola\"\n", "model.config.push_to_hub(repo_name)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "name": "The push to hub API (PyTorch)", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }