course/videos/push_to_hub_tf.ipynb (253 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pUh5cGmNV8Y?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pUh5cGmNV8Y?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset, load_metric\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"cola\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"model_checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def preprocess_function(examples):\n",
" return tokenizer(examples[\"sentence\"], truncation=True)\n",
"\n",
"tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n",
"\n",
"tokenized_datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import DataCollatorWithPadding\n",
"\n",
"collator = DataCollatorWithPadding(tokenizer=tokenizer,\n",
" return_tensors='tf')\n",
"\n",
"train_dataset = tokenized_datasets['train'].to_tf_dataset(\n",
" columns=['attention_mask', 'input_ids', 'labels', 'token_type_ids'],\n",
" collate_fn=collator,\n",
" batch_size=32,\n",
" shuffle=True\n",
")\n",
"validation_dataset = tokenized_datasets['validation'].to_tf_dataset(\n",
" columns=['attention_mask', 'input_ids', 'labels', 'token_type_ids'],\n",
" collate_fn=collator,\n",
" batch_size=32,\n",
" shuffle=False\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import TFAutoModelForSequenceClassification\n",
"\n",
"model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AdamWeightDecay\n",
"\n",
"optimizer = AdamWeightDecay(2e-5, weight_decay_rate=0.01)\n",
"\n",
"model.compile(optimizer=optimizer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import PushToHubCallback\n",
"\n",
"callbacks = [PushToHubCallback(\"model_output/\", \n",
" tokenizer=tokenizer,\n",
" hub_model_id=\"bert-fine-tuned-cola\")]\n",
"\n",
"model.fit(train_dataset, validation_data=validation_dataset, epochs=2, callbacks=callbacks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.push_to_hub(\"bert-fine-tuned-cola\", commit_message=\"End of training\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Labels"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"label_names = raw_datasets[\"train\"].features[\"label\"].names\n",
"label_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.config.id2label = {str(i): lbl for i, lbl in enumerate(label_names)}\n",
"model.config.label2id = {lbl: str(i) for i, lbl in enumerate(label_names)}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"repo_name = \"bert-fine-tuned-cola\"\n",
"model.config.push_to_hub(repo_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loaded_model = TFAutoModelForSequenceClassification.from_pretrained('Rocketknight1/bert-fine-tuned-cola')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "The push to hub API (TensorFlow)",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}