course/videos/push_to_hub_tf.ipynb (253 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form" }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pUh5cGmNV8Y?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#@title\n", "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pUh5cGmNV8Y?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers and Datasets libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from huggingface_hub import notebook_login\n", "\n", "notebook_login()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "\n", "raw_datasets = load_dataset(\"glue\", \"cola\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_datasets" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer\n", "\n", "model_checkpoint = \"bert-base-cased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def preprocess_function(examples):\n", " return tokenizer(examples[\"sentence\"], truncation=True)\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n", "\n", "tokenized_datasets" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import DataCollatorWithPadding\n", "\n", "collator = DataCollatorWithPadding(tokenizer=tokenizer,\n", " return_tensors='tf')\n", "\n", "train_dataset = tokenized_datasets['train'].to_tf_dataset(\n", " columns=['attention_mask', 'input_ids', 'labels', 'token_type_ids'],\n", " collate_fn=collator,\n", " batch_size=32,\n", " shuffle=True\n", ")\n", "validation_dataset = tokenized_datasets['validation'].to_tf_dataset(\n", " columns=['attention_mask', 'input_ids', 'labels', 'token_type_ids'],\n", " collate_fn=collator,\n", " batch_size=32,\n", " shuffle=False\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import TFAutoModelForSequenceClassification\n", "\n", "model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AdamWeightDecay\n", "\n", "optimizer = AdamWeightDecay(2e-5, weight_decay_rate=0.01)\n", "\n", "model.compile(optimizer=optimizer)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import PushToHubCallback\n", "\n", "callbacks = [PushToHubCallback(\"model_output/\", \n", " tokenizer=tokenizer,\n", " hub_model_id=\"bert-fine-tuned-cola\")]\n", "\n", "model.fit(train_dataset, validation_data=validation_dataset, epochs=2, callbacks=callbacks)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.push_to_hub(\"bert-fine-tuned-cola\", commit_message=\"End of training\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "label_names = raw_datasets[\"train\"].features[\"label\"].names\n", "label_names" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.config.id2label = {str(i): lbl for i, lbl in enumerate(label_names)}\n", "model.config.label2id = {lbl: str(i) for i, lbl in enumerate(label_names)}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "repo_name = \"bert-fine-tuned-cola\"\n", "model.config.push_to_hub(repo_name)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "loaded_model = TFAutoModelForSequenceClassification.from_pretrained('Rocketknight1/bert-fine-tuned-cola')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "name": "The push to hub API (TensorFlow)", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }