course/videos/tf_lr_scheduling.ipynb (201 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form" }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/cpzq6ESSM5c?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#@title\n", "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/cpzq6ESSM5c?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers and Datasets libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form" }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/eKv4rRcCNX0?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#@title\n", "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/eKv4rRcCNX0?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers and Datasets libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset\n", "from transformers import AutoTokenizer\n", "import numpy as np\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mrpc\")\n", "checkpoint = \"bert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n", "\n", "def tokenize_dataset(dataset):\n", " encoded = tokenizer(\n", " dataset[\"sentence1\"],\n", " dataset[\"sentence2\"],\n", " truncation=True,\n", " )\n", " return encoded.data\n", "\n", "tokenized_datasets = raw_datasets.map(tokenize_dataset)\n", "\n", "train_dataset = tokenized_datasets[\"train\"].to_tf_dataset(\n", " columns=[\"input_ids\", \"attention_mask\", \"token_type_ids\"],\n", " label_cols=[\"label\"],\n", " shuffle=True,\n", " batch_size=8)\n", "\n", "validation_dataset = tokenized_datasets[\"validation\"].to_tf_dataset(\n", " columns=[\"input_ids\", \"attention_mask\", \"token_type_ids\"],\n", " label_cols=[\"label\"],\n", " shuffle=True,\n", " batch_size=8)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "from transformers import TFAutoModelForSequenceClassification\n", "\n", "checkpoint = 'bert-base-cased'\n", "model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n", "loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.optimizers.schedules import PolynomialDecay\n", "\n", "num_epochs = 3\n", "num_train_steps = len(train_dataset) * num_epochs\n", "lr_scheduler = PolynomialDecay(\n", " initial_learning_rate=5e-5,\n", " end_learning_rate=0.,\n", " decay_steps=num_train_steps\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.optimizers import Adam\n", "\n", "opt = Adam(learning_rate=lr_scheduler)\n", "model.compile(loss=loss, optimizer=opt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "name": "Learning rate Scheduling with TensorFlow", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }