course/videos/token_processing.ipynb (178 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/iY2AZYdZAr0?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/iY2AZYdZAr0?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"raw_datasets = load_dataset(\"conll2003\")\n",
"raw_datasets = raw_datasets.remove_columns([\"chunk_tags\", \"id\", \"pos_tags\"])\n",
"raw_datasets = raw_datasets.rename_column(\"ner_tags\", \"labels\")\n",
"raw_datasets = raw_datasets.rename_column(\"tokens\", \"words\")\n",
"raw_datasets[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(raw_datasets[\"train\"][0][\"words\"])\n",
"print(raw_datasets[\"train\"][0][\"labels\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"label_names = raw_datasets[\"train\"].features[\"labels\"].feature.names\n",
"label_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"model_checkpoint = \"bert-base-cased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n",
"\n",
"inputs = tokenizer(raw_datasets[\"train\"][0][\"words\"], is_split_into_words=True)\n",
"inputs.tokens()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def shift_label(label):\n",
" # If the label is B-XXX we change it to I-XXX\n",
" if label % 2 == 1:\n",
" label += 1\n",
" return label\n",
"\n",
"def align_labels_with_tokens(labels, word_ids):\n",
" new_labels = []\n",
" current_word = None\n",
" for word_id in word_ids:\n",
" if word_id is None:\n",
" new_labels.append(-100)\n",
" elif word_id != current_word:\n",
" # Start of a new word!\n",
" current_word = word_id\n",
" new_labels.append(labels[word_id])\n",
" else:\n",
" new_labels.append(shift_label(labels[word_id]))\n",
"\n",
" return new_labels"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize_and_align_labels(examples):\n",
" tokenized_inputs = tokenizer(examples[\"words\"], truncation=True, is_split_into_words=True)\n",
" new_labels = []\n",
" for i, labels in enumerate(examples[\"labels\"]):\n",
" word_ids = tokenized_inputs.word_ids(i)\n",
" new_labels.append(align_labels_with_tokens(labels, word_ids))\n",
"\n",
" tokenized_inputs[\"labels\"] = new_labels\n",
" return tokenized_inputs\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_and_align_labels, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import DataCollatorForTokenClassification\n",
"\n",
"data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "Data processing for Token Classification",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}