course/videos/tokenizer_pipeline.ipynb (243 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Yffk5aydLzg?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Yffk5aydLzg?rel=0&controls=0&showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[101, 2292, 1005, 1055, 3046, 2000, 19204, 4697, 999, 102]\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"inputs = tokenizer(\"Let's try to tokenize!\")\n",
"print(inputs[\"input_ids\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['let', \"'\", 's', 'try', 'to', 'token', '##ize', '!']\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"tokens = tokenizer.tokenize(\"Let's try to tokenize!\")\n",
"print(tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['▁let', \"'\", 's', '▁try', '▁to', '▁to', 'ken', 'ize', '!']\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"albert-base-v1\")\n",
"tokens = tokenizer.tokenize(\"Let's try to tokenize!\")\n",
"print(tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2292, 1005, 1055, 3046, 2000, 19204, 4697, 999]\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"tokens = tokenizer.tokenize(\"Let's try to tokenize!\")\n",
"input_ids = tokenizer.convert_tokens_to_ids(tokens)\n",
"print(input_ids)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[101, 2292, 1005, 1055, 3046, 2000, 19204, 4697, 999, 102]\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"tokens = tokenizer.tokenize(\"Let's try to tokenize!\")\n",
"input_ids = tokenizer.convert_tokens_to_ids(tokens)\n",
"final_inputs = tokenizer.prepare_for_model(input_ids)\n",
"print(final_inputs[\"input_ids\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS] let's try to tokenize! [SEP]\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"inputs = tokenizer(\"Let's try to tokenize!\")\n",
"\n",
"print(tokenizer.decode(inputs[\"input_ids\"]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s>Let's try to tokenize!</s>\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"roberta-base\")\n",
"inputs = tokenizer(\"Let's try to tokenize!\")\n",
"\n",
"print(tokenizer.decode(inputs[\"input_ids\"]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'input_ids': [101, 2292, 1005, 1055, 3046, 2000, 19204, 4697, 999, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n"
]
}
],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"inputs = tokenizer(\"Let's try to tokenize!\")\n",
"print(inputs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "The tokenization pipeline",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}