sagemaker/17_custom_inference_script/code/inference.py (20 lines of code) (raw):

from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Helper: Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def model_fn(model_dir): # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModel.from_pretrained(model_dir) return model, tokenizer def predict_fn(data, model_and_tokenizer): # destruct model and tokenizer model, tokenizer = model_and_tokenizer # Tokenize sentences sentences = data.pop("inputs", data) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # return dictonary, which will be json serializable return {"vectors": sentence_embeddings}