sagemaker/24_train_bloom_peft_lora/scripts/inference.py (17 lines of code) (raw):

from transformers import AutoModelForCausalLM, AutoTokenizer import torch def model_fn(model_dir): # load model and processor from model_dir model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(model_dir) return model, tokenizer def predict_fn(data, model_and_tokenizer): # unpack model and tokenizer model, tokenizer = model_and_tokenizer # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess input_ids = tokenizer(inputs, return_tensors="pt").input_ids.to(model.device) # pass inputs with all kwargs in data if parameters is not None: outputs = model.generate(input_ids, **parameters) else: outputs = model.generate(input_ids) # postprocess the prediction prediction = tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}]