sagemaker/24_train_bloom_peft_lora/scripts/run_clm.py (127 lines of code) (raw):
import os
import argparse
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
set_seed,
default_data_collator,
)
from datasets import load_from_disk
import torch
from transformers import Trainer, TrainingArguments
from peft import PeftConfig, PeftModel
import shutil
def parse_arge():
"""Parse the arguments."""
parser = argparse.ArgumentParser()
# add model id and dataset path argument
parser.add_argument(
"--model_id",
type=str,
default="google/flan-t5-xl",
help="Model id to use for training.",
)
parser.add_argument("--dataset_path", type=str, default="lm_dataset", help="Path to dataset.")
# add training hyperparameters for epochs, batch size, learning rate, and seed
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for.")
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=1,
help="Batch size to use for training.",
)
parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate to use for training.")
parser.add_argument("--seed", type=int, default=42, help="Seed to use for training.")
parser.add_argument(
"--gradient_checkpointing",
type=bool,
default=True,
help="Path to deepspeed config file.",
)
parser.add_argument(
"--bf16",
type=bool,
default=True if torch.cuda.get_device_capability()[0] == 8 else False,
help="Whether to use bf16.",
)
args = parser.parse_known_args()
return args
def create_peft_config(model):
from peft import (
get_peft_model,
LoraConfig,
TaskType,
prepare_model_for_int8_training,
)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.05,
target_modules=["query_key_value"],
)
# prepare int-8 model for training
model = prepare_model_for_int8_training(model)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model
def training_function(args):
# set seed
set_seed(args.seed)
dataset = load_from_disk(args.dataset_path)
# load model from the hub
model = AutoModelForCausalLM.from_pretrained(
args.model_id,
use_cache=False if args.gradient_checkpointing else True, # this is needed for gradient checkpointing
device_map="auto",
load_in_8bit=True,
)
# create peft config
model = create_peft_config(model)
# Define training args
output_dir = "/tmp"
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
per_device_train_batch_size=args.per_device_train_batch_size,
bf16=args.bf16, # Use BF16 if available
learning_rate=args.lr,
num_train_epochs=args.epochs,
gradient_checkpointing=args.gradient_checkpointing,
gradient_accumulation_steps=2,
# logging strategies
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=10,
save_strategy="no",
optim="adafactor",
)
# Create Trainer instance
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=default_data_collator,
)
# Start training
trainer.train()
# merge adapter weights with base model and save
# save int 8 model
trainer.model.save_pretrained(output_dir)
# clear memory
del model
del trainer
# load PEFT model in fp16
peft_config = PeftConfig.from_pretrained(output_dir)
model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
return_dict=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model = PeftModel.from_pretrained(model, output_dir)
model.eval()
# Merge LoRA and base model and save
merged_model = model.merge_and_unload()
merged_model.save_pretrained("/opt/ml/model/")
# save tokenizer for easy inference
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
tokenizer.save_pretrained("/opt/ml/model/")
# copy inference script
os.makedirs("/opt/ml/model/code", exist_ok=True)
shutil.copyfile(
os.path.join(os.path.dirname(__file__), "inference.py"),
"/opt/ml/model/code/inference.py",
)
shutil.copyfile(
os.path.join(os.path.dirname(__file__), "requirements.txt"),
"/opt/ml/model/code/requirements.txt",
)
def main():
args, _ = parse_arge()
training_function(args)
if __name__ == "__main__":
main()