sagemaker/26_document_ai_donut/scripts/inference.py (29 lines of code) (raw):

from transformers import DonutProcessor, VisionEncoderDecoderModel import torch device = "cuda" if torch.cuda.is_available() else "cpu" def model_fn(model_dir): # Load our model from Hugging Face processor = DonutProcessor.from_pretrained(model_dir) model = VisionEncoderDecoderModel.from_pretrained(model_dir) # Move model to GPU model.to(device) return model, processor def predict_fn(data, model_and_processor): # unpack model and tokenizer model, processor = model_and_processor image = data.get("inputs") pixel_values = processor.feature_extractor(image, return_tensors="pt").pixel_values task_prompt = "<s>" # start of sequence token for decoder since we are not having a user prompt decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids # run inference outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # process output prediction = processor.batch_decode(outputs.sequences)[0] prediction = processor.token2json(prediction) return prediction