in benchmark/muse_table.py [0:0]
def table(df, device, batch_size):
fdf = df[
(df["Device"] == device)
& (df["Use Xformers"] == True)
& ((df["Use Fused Residual Norm"] == True) | (df["Use Fused Residual Norm"].isna()))
& (df["Batch Size"] == batch_size)
]
chart_values = {
# "stable diffusion 1.5; timesteps 12": fdf[
# (fdf["Model Name"] == "stable_diffusion_1_5") & (fdf["Timesteps"] == "12")
# ].iloc[0]["Median"],
"stable diffusion 1.5; resolution 512; timesteps 20": fdf[
(fdf["Model Name"] == "stable_diffusion_1_5") & (fdf["Timesteps"] == "20")
].iloc[0]["Median"],
"sdxl; resolution 1024; timesteps 12": fdf[(fdf["Model Name"] == "sdxl") & (fdf["Timesteps"] == "12")].iloc[0][
"Median"
],
"sdxl; resolution 1024; timesteps 20": fdf[(fdf["Model Name"] == "sdxl") & (fdf["Timesteps"] == "20")].iloc[0][
"Median"
],
"ssd 1b; resolution 1024; timesteps 12": fdf[
(fdf["Model Name"] == "ssd_1b") & (fdf["Timesteps"] == "12")
].iloc[0]["Median"],
"ssd 1b; resolution 1024; timesteps 20": fdf[
(fdf["Model Name"] == "ssd_1b") & (fdf["Timesteps"] == "20")
].iloc[0]["Median"],
"wurst; resolution 1024; timesteps TODO": fdf[(fdf["Model Name"] == "wurst")].iloc[0]["Median"],
"lcm; resolution 512; timesteps 4": fdf[(fdf["Model Name"] == "lcm") & (fdf["Timesteps"] == "4")].iloc[0][
"Median"
],
"lcm; resolution 512; timesteps 8": fdf[(fdf["Model Name"] == "lcm") & (fdf["Timesteps"] == "8")].iloc[0][
"Median"
],
"muse-256; resolution 256; timesteps 12": fdf[
(fdf["Model Name"] == "muse") & (fdf["Resolution"] == 256) & (fdf["Timesteps"] == "12")
].iloc[0]["Median"],
# "muse; resolution 256; timesteps 20": fdf[
# (fdf["Model Name"] == "muse") & (fdf["Resolution"] == 256) & (fdf["Timesteps"] == "20")
# ].iloc[0]["Median"],
"muse-512; resolution 512; timesteps 12": fdf[
(fdf["Model Name"] == "muse") & (fdf["Resolution"] == 512) & (fdf["Timesteps"] == "12")
].iloc[0]["Median"],
# "muse; resolution 512; timesteps 20": fdf[
# (fdf["Model Name"] == "muse") & (fdf["Resolution"] == 512) & (fdf["Timesteps"] == "20")
# ].iloc[0]["Median"],
"sd-turbo; resolution 512; timesteps 1": fdf[(fdf["Model Name"] == "sd_turbo")].iloc[0]["Median"],
"sdxl-turbo; resolution 1024; timesteps 1": fdf[(fdf["Model Name"] == "sdxl_turbo")].iloc[0]["Median"],
}
chart_values = [x for x in chart_values.items()]
chart_values = sorted(chart_values, key=lambda x: x[1])
table = r"""
\begin{tabular}{|l|c|c|c|}
\hline
\textbf{ } & \textbf{inference time} & \textbf{timesteps} & \textbf{resolution} \\ \hline
"""
for label, value in chart_values:
# gross but we barely run this code
model, resolution, timesteps = label.split(";")
resolution = resolution.split(" ")[-1]
timesteps = timesteps.split(" ")[-1]
table += r"\textbf{" + f"{model}}} & {value} s & {timesteps} & {resolution}" + r" \\ \hline" + "\n"
table += r"\end{tabular}"
return table