def __init__()

in muse/modeling_taming_vqgan.py [0:0]


    def __init__(self, config):
        super().__init__()

        self.config = config

        # compute in_channel_mult, block_in and curr_res at lowest res
        block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1]
        curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
        self.z_shape = (1, self.config.z_channels, curr_res, curr_res)

        # z to block_in
        self.conv_in = nn.Conv2d(
            self.config.z_channels,
            block_in,
            kernel_size=3,
            stride=1,
            padding=1,
        )

        # middle
        self.mid = MidBlock(config, block_in, self.config.no_attn_mid_block, self.config.dropout)

        # upsampling
        upsample_blocks = []
        for i_level in reversed(range(self.config.num_resolutions)):
            upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level))
            if i_level != 0:
                curr_res = curr_res * 2
        self.up = nn.ModuleList(list(reversed(upsample_blocks)))  # reverse to get consistent order

        # end
        block_out = self.config.hidden_channels * self.config.channel_mult[0]
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True)
        self.conv_out = nn.Conv2d(
            block_out,
            self.config.num_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )