def sd_turbo_benchmark()

in benchmark/muse_perf.py [0:0]


def sd_turbo_benchmark(batch_size, timesteps, use_xformers):
    model = "stabilityai/sd-turbo"
    dtype = torch.float16
    pipe = AutoPipelineForText2Image.from_pretrained(model, torch_dtype=torch.float16, variant="fp16", safety_checker=None)
    pipe.to("cuda")

    if use_xformers:
        pipe.enable_xformers_memory_efficient_attention()

    def benchmark_fn():
        pipe(
            prompt,
            num_images_per_prompt=batch_size,
            num_inference_steps=timesteps,
        )

    pipe(prompt, num_images_per_prompt=batch_size, num_inference_steps=2)

    def fn():
        return Timer(
            stmt="benchmark_fn()",
            globals={"benchmark_fn": benchmark_fn},
            num_threads=num_threads,
            label=f"batch_size: {batch_size}, dtype: {dtype}, timesteps {timesteps}, use_xformers: {use_xformers}",
            description=model,
        ).blocked_autorange(min_run_time=1)

    return measure_max_memory_allocated(fn)