configs/coyo_f8_preencoded.yaml (112 lines of code) (raw):

wandb: entity: null experiment: project: "muse" name: "coyo-f8" output_dir: "coyo-f8" max_train_examples: 700000000 # toal sucessfully downloaded images for laiona6plus max_eval_examples: 8118 save_every: 2000 eval_every: 2000 generate_every: 2000 log_every: 50 log_grad_norm_every: 1000 resume_from_checkpoint: False resume_lr_scheduler: True log_pixel_entropy_every: 2000 log_image_entropy_every: 2000 log_cross_entropy_every: 2000 log_token_probability_distributions_every: 2000 model: vq_model: type: "paella_vq" pretrained: "openMUSE/paellavq-f8-8192-laion" text_encoder: type: "clip" pretrained: "openMUSE/CLIP-ViT-L-14-DataComp.XL-s13B-b90K-penultimate" architecture: "uvit" transformer: vocab_size: 8256 # (8192 + 1 for <mask> = 8193 but 8256 is the next multiple of 8) hidden_size: 1024 intermediate_size: 4096 num_hidden_layers: 22 num_attention_heads: 16 max_position_embeddings: 256 in_channels: 384 block_out_channels: - 512 - 1024 num_res_blocks: 3 patch_size: 1 encoder_hidden_size: 768 add_cross_attention: True project_encoder_hidden_states: False codebook_size: 8192 num_vq_tokens: 1024 initializer_range: 0.02 norm_type: "rmsnorm" layer_norm_eps: 1e-6 use_normformer: False use_encoder_layernorm: True use_bias: False hidden_dropout: 0.0 attention_dropout: 0.0 use_codebook_size_for_output: True layer_norm_before_mlm: True layer_norm_embedddings: True gradient_checkpointing: True enable_xformers_memory_efficient_attention: True dataset: type: "text2image" params: train_shards_path_or_url: "pipe:aws s3 cp s3://muse-datasets/hf-datasets-coyo-700m-pre-encoded/{00000..01208}.tar -" eval_shards_path_or_url: "pipe:aws s3 cp s3://muse-datasets/hf-datasets-coyo-700m-pre-encoded/{01209..01210}.tar -" validation_prompts_file: "validation_prompts/dalle_mini_prompts.txt" batch_size: ${training.batch_size} shuffle_buffer_size: 1000 num_workers: 4 resolution: 256 pin_memory: True persistent_workers: True preprocessing: max_seq_length: 77 resolution: 256 center_crop: False random_flip: False optimizer: name: fused_adamw params: # default adamw params learning_rate: 1e-4 scale_lr: False # scale learning rate by total batch size beta1: 0.9 beta2: 0.999 weight_decay: 0.01 epsilon: 1e-8 lr_scheduler: scheduler: "constant_with_warmup" params: learning_rate: ${optimizer.params.learning_rate} warmup_steps: 2000 mask_schedule: schedule: "cosine" # params: # for any additional args to schedule function training: gradient_accumulation_steps: 1 batch_size: 88 mixed_precision: "fp16" enable_tf32: False use_ema: False seed: 9345104 max_train_steps: 10000000 overfit_one_batch: False cond_dropout_prob: 0.1 min_masking_rate: 0.0 label_smoothing: 0.0 max_grad_norm: null guidance_scale: 7.0 generation_timesteps: 16 generation_temperature: 2.0 # related to vae code sampling use_soft_code_target: False use_stochastic_code: False soft_code_temp: 1.0 mask_schedule: "cosine" pre_encode: True