muse/modeling_paella_vq.py (149 lines of code) (raw):
# VQGAN taken from https://github.com/dome272/Paella/
import math
import torch
import torch.nn.functional as F
from torch import nn
from .modeling_utils import ConfigMixin, ModelMixin, register_to_config
# TODO: This model only supports inference, not training. Make it trainable.
class VectorQuantizer(nn.Module):
"""
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
Discretization bottleneck part of the VQ-VAE.
"""
def __init__(self, num_embeddings, embedding_dim, commitment_cost=0.25):
r"""
Args:
num_embeddings: number of vectors in the quantized space.
embedding_dim: dimensionality of the tensors in the quantized space.
Inputs to the modules must be in this format as well.
commitment_cost: scalar which controls the weighting of the loss terms
(see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta).
"""
super().__init__()
self.num_embeddings = num_embeddings
self.codebook_dim = embedding_dim
self.commitment_cost = commitment_cost
self.codebook = nn.Embedding(num_embeddings, embedding_dim)
self.codebook.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings)
def forward(self, hidden_states, return_loss=False):
"""
Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the
closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
# reshape z -> (batch, height, width, channel) and flatten
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
distances = self.compute_distances(hidden_states)
min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.codebook.weight).view(hidden_states.shape)
# reshape to (batch, num_tokens)
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)
# compute loss for embedding
loss = None
if return_loss:
loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean(
(z_q - hidden_states.detach()) ** 2
)
# preserve gradients
z_q = hidden_states + (z_q - hidden_states).detach()
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, min_encoding_indices, loss
def compute_distances(self, hidden_states):
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
hidden_states_flattended = hidden_states.reshape((-1, self.codebook_dim))
return torch.cdist(hidden_states_flattended, self.codebook.weight)
def get_codebook_entry(self, indices):
# indices are expected to be of shape (batch, num_tokens)
# get quantized latent vectors
batch, num_tokens = indices.shape
z_q = self.codebook(indices)
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2)
return z_q
# adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372
def get_soft_code(self, hidden_states, temp=1.0, stochastic=False):
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() # (batch, height, width, channel)
distances = self.compute_distances(hidden_states) # (batch * height * width, num_embeddings)
soft_code = F.softmax(-distances / temp, dim=-1) # (batch * height * width, num_embeddings)
if stochastic:
code = torch.multinomial(soft_code, 1) # (batch * height * width, 1)
else:
code = distances.argmin(dim=-1) # (batch * height * width)
code = code.reshape(hidden_states.shape[0], -1) # (batch, height * width)
batch, num_tokens = code.shape
soft_code = soft_code.reshape(batch, num_tokens, -1) # (batch, height * width, num_embeddings)
return soft_code, code
def get_code(self, hidden_states):
# reshape z -> (batch, height, width, channel)
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
distances = self.compute_distances(hidden_states)
indices = torch.argmin(distances, axis=1).unsqueeze(1)
indices = indices.reshape(hidden_states.shape[0], -1)
return indices
class ResBlock(nn.Module):
def __init__(self, c, c_hidden):
super().__init__()
# depthwise/attention
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential(nn.ReplicationPad2d(1), nn.Conv2d(c, c, kernel_size=3, groups=c))
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c, c_hidden),
nn.GELU(),
nn.Linear(c_hidden, c),
)
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
def _basic_init(module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
def _norm(self, x, norm):
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
def forward(self, x):
mods = self.gammas
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
x = x + self.depthwise(x_temp) * mods[2]
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
return x
class PaellaVQModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192, scale_factor=0.3764
): # 1.0
super().__init__()
self.c_latent = c_latent
self.scale_factor = scale_factor
c_levels = [c_hidden // (2**i) for i in reversed(range(levels))]
# Encoder blocks
self.in_block = nn.Sequential(nn.PixelUnshuffle(2), nn.Conv2d(3 * 4, c_levels[0], kernel_size=1))
down_blocks = []
for i in range(levels):
if i > 0:
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = ResBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block)
down_blocks.append(
nn.Sequential(
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
)
)
self.down_blocks = nn.Sequential(*down_blocks)
self.codebook_size = codebook_size
self.vquantizer = VectorQuantizer(codebook_size, c_latent)
# Decoder blocks
up_blocks = [nn.Sequential(nn.Conv2d(c_latent, c_levels[-1], kernel_size=1))]
for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1):
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
up_blocks.append(block)
if i < levels - 1:
up_blocks.append(
nn.ConvTranspose2d(
c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1
)
)
self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential(
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.PixelShuffle(2),
)
def encode(self, x):
x = self.in_block(x)
x = self.down_blocks(x)
# qe, (vq_loss, commit_loss), indices = self.vquantizer(x, dim=1)
# return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25
quantized_states, codebook_indices, codebook_loss = self.vquantizer(x)
quantized_states = quantized_states / self.scale_factor
output = (quantized_states, codebook_indices, codebook_loss)
return output
def decode(self, x):
x = x * self.scale_factor
x = self.up_blocks(x)
x = self.out_block(x)
return x
def decode_code(self, codebook_indices):
x = self.vquantizer.get_codebook_entry(codebook_indices)
x = self.up_blocks(x)
x = self.out_block(x)
return x
def get_code(self, pixel_values):
x = self.in_block(pixel_values)
x = self.down_blocks(x)
return self.vquantizer.get_code(x)
def forward(self, x, quantize=False):
qe = self.encode(x)[0]
x = self.decode(qe)
return x