in src/open_r1/configs.py [0:0]
def __post_init__(self):
if self.dataset_name is None and self.dataset_mixture is None:
raise ValueError("Either `dataset_name` or `dataset_mixture` must be provided")
if self.dataset_mixture is not None:
if not isinstance(self.dataset_mixture, dict) or "datasets" not in self.dataset_mixture:
raise ValueError(
"dataset_mixture must be a dictionary with a 'datasets' key. "
"Expected format: {'datasets': [...], 'seed': int}"
)
datasets_list = []
datasets_data = self.dataset_mixture.get("datasets", [])
if isinstance(datasets_data, list):
for dataset_config in datasets_data:
datasets_list.append(
DatasetConfig(
id=dataset_config.get("id"),
config=dataset_config.get("config"),
split=dataset_config.get("split", "train"),
columns=dataset_config.get("columns"),
weight=dataset_config.get("weight", 1.0),
)
)
else:
raise ValueError("'datasets' must be a list of dataset configurations")
self.dataset_mixture = DatasetMixtureConfig(
datasets=datasets_list,
seed=self.dataset_mixture.get("seed", 0),
test_split_size=self.dataset_mixture.get("test_split_size", None),
)
# Check that column names are consistent across all dataset configs
columns_sets = [set(dataset.columns) for dataset in datasets_list if dataset.columns is not None]
if columns_sets:
first_columns = columns_sets[0]
if not all(columns == first_columns for columns in columns_sets):
raise ValueError(
"Column names must be consistent across all dataset configurations in a mixture. "
f"Found different column sets: {[list(cols) for cols in columns_sets]}"
)