in src/open_r1/sft.py [0:0]
def main(script_args, training_args, model_args):
set_seed(training_args.seed)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info(f"Model parameters {model_args}")
logger.info(f"Script parameters {script_args}")
logger.info(f"Training parameters {training_args}")
# Check for last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
if "wandb" in training_args.report_to:
init_wandb_training(training_args)
######################################
# Load dataset, tokenizer, and model #
######################################
dataset = get_dataset(script_args)
tokenizer = get_tokenizer(model_args, training_args)
model = get_model(model_args, training_args)
if tokenizer.chat_template is None:
logger.info("No chat template provided, defaulting to ChatML.")
model, tokenizer = setup_chat_format(model, tokenizer, format="chatml")
############################
# Initialize the SFT Trainer
############################
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=(dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None),
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
callbacks=get_callbacks(training_args, model_args),
)
###############
# Training loop
###############
logger.info("*** Train ***")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(dataset[script_args.dataset_train_split])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
# Align the model's generation config with the tokenizer's eos token
# to avoid unbounded generation in the transformers `pipeline()` function
trainer.model.generation_config.eos_token_id = tokenizer.eos_token_id
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"dataset_name": script_args.dataset_name,
"tags": ["open-r1"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(dataset[script_args.dataset_test_split])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
#############
# push to hub
#############
if training_args.push_to_hub:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)