in src/open_r1/rewards.py [0:0]
def len_reward(completions: list[Dict[str, str]], solution: list[str], **kwargs) -> float:
"""Compute length-based rewards to discourage overthinking and promote token efficiency.
Taken from the Kimi 1.5 tech report: https://huggingface.co/papers/2501.12599
Args:
completions: List of model completions
solution: List of ground truth solutions
Returns:
List of rewards where:
- For correct answers: reward = 0.5 - (len - min_len)/(max_len - min_len)
- For incorrect answers: reward = min(0, 0.5 - (len - min_len)/(max_len - min_len))
"""
contents = [completion[0]["content"] for completion in completions]
# First check correctness of answers
correctness = []
for content, sol in zip(contents, solution):
gold_parsed = parse(
sol,
extraction_mode="first_match",
extraction_config=[LatexExtractionConfig()],
)
if len(gold_parsed) == 0:
# Skip unparseable examples
correctness.append(True) # Treat as correct to avoid penalizing
print("Failed to parse gold solution: ", sol)
continue
answer_parsed = parse(
content,
extraction_config=[
LatexExtractionConfig(
normalization_config=NormalizationConfig(
nits=False,
malformed_operators=False,
basic_latex=True,
equations=True,
boxed=True,
units=True,
),
boxed_match_priority=0,
try_extract_without_anchor=False,
)
],
extraction_mode="first_match",
)
correctness.append(verify(answer_parsed, gold_parsed))
# Calculate lengths
lengths = [len(content) for content in contents]
min_len = min(lengths)
max_len = max(lengths)
# If all responses have the same length, return zero rewards
if max_len == min_len:
return [0.0] * len(completions)
rewards = []
for length, is_correct in zip(lengths, correctness):
lambda_val = 0.5 - (length - min_len) / (max_len - min_len)
if is_correct:
reward = lambda_val
else:
reward = min(0, lambda_val)
rewards.append(float(reward))
return rewards