recipes/Qwen2.5-1.5B-Instruct/grpo/config_demo.yaml (47 lines of code) (raw):

# Model arguments model_name_or_path: Qwen/Qwen2.5-1.5B-Instruct model_revision: main torch_dtype: bfloat16 attn_implementation: flash_attention_2 # Data training arguments dataset_name: open-r1/OpenR1-Math-220k dataset_prompt_column: problem system_prompt: "You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>" # GRPO trainer config bf16: true use_vllm: true do_eval: false gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: Qwen2.5-1.5B-Open-R1-GRPO hub_strategy: every_save learning_rate: 2.0e-05 log_completions: true log_level: info logging_first_step: true logging_steps: 1 logging_strategy: steps lr_scheduler_type: cosine max_prompt_length: 512 max_completion_length: 1024 max_steps: -1 num_generations: 16 num_train_epochs: 1 output_dir: data/Qwen2.5-1.5B-Open-R1-GRPO overwrite_output_dir: true per_device_eval_batch_size: 16 per_device_train_batch_size: 16 push_to_hub: true report_to: - wandb reward_funcs: - accuracy - format - tag_count reward_weights: - 1.0 - 1.0 - 1.0 save_strategy: "epoch" save_total_limit: 1 seed: 42 warmup_ratio: 0.1