recipes/Qwen2.5-1.5B-Instruct/grpo/config_demo_code_ioi.yaml (53 lines of code) (raw):

# Model arguments model_name_or_path: Qwen/Qwen2.5-1.5B-Instruct model_revision: main torch_dtype: bfloat16 attn_implementation: flash_attention_2 # Data training arguments dataset_name: open-r1/ioi dataset_prompt_column: problem system_prompt: "You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>" # GRPO trainer config beta: 0.01 bf16: true use_vllm: true do_eval: false gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: Qwen2.5-1.5B-Open-R1-Code-GRPO hub_strategy: every_save learning_rate: 5.0e-06 log_completions: true log_level: info logging_first_step: true logging_steps: 1 logging_strategy: steps lr_scheduler_type: cosine_with_min_lr lr_scheduler_kwargs: min_lr_rate: 0.1 max_prompt_length: 1024 max_completion_length: 2048 max_steps: 500 num_generations: 14 num_train_epochs: 1 output_dir: data/Qwen2.5-1.5B-Open-R1-Code-GRPO overwrite_output_dir: true per_device_train_batch_size: 16 push_to_hub: true report_to: - wandb save_strategy: "steps" save_steps: 50 save_total_limit: 1 seed: 42 temperature: 1.0 warmup_ratio: 0.03 # ioi specific config code_language: cpp reward_funcs: - ioi_code - code_format - format reward_weights: - 1.0 - 0.1 - 0.1 # for each generation, evaluate these many test cases in parallel, then check if any of them failed (0 score): if so stop evaluating # otherwise continue with the next batch of test cases. Useful to avoid overloading the eval server + save time on wrong solutions code_eval_test_batch_size: 3