src/open_r1/grpo.py (105 lines of code) (raw):

# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import datasets import transformers from transformers import set_seed from transformers.trainer_utils import get_last_checkpoint from open_r1.configs import GRPOConfig, GRPOScriptArguments from open_r1.rewards import get_reward_funcs from open_r1.utils import get_dataset, get_model, get_tokenizer from open_r1.utils.callbacks import get_callbacks from open_r1.utils.wandb_logging import init_wandb_training from trl import GRPOTrainer, ModelConfig, TrlParser, get_peft_config logger = logging.getLogger(__name__) def main(script_args, training_args, model_args): # Set seed for reproducibility set_seed(training_args.seed) ############### # Setup logging ############### logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process a small summary logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Model parameters {model_args}") logger.info(f"Script parameters {script_args}") logger.info(f"Training parameters {training_args}") # Check for last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir): last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.") if "wandb" in training_args.report_to: init_wandb_training(training_args) # Load the dataset dataset = get_dataset(script_args) ################ # Load tokenizer ################ tokenizer = get_tokenizer(model_args, training_args) ############## # Load model # ############## logger.info("*** Loading model ***") model = get_model(model_args, training_args) # Get reward functions from the registry reward_funcs = get_reward_funcs(script_args) # Format into conversation def make_conversation(example, prompt_column: str = script_args.dataset_prompt_column): prompt = [] if training_args.system_prompt is not None: prompt.append({"role": "system", "content": training_args.system_prompt}) if prompt_column not in example: raise ValueError(f"Dataset Question Field Error: {prompt_column} is not supported.") prompt.append({"role": "user", "content": example[prompt_column]}) return {"prompt": prompt} dataset = dataset.map(make_conversation) for split in dataset: if "messages" in dataset[split].column_names: dataset[split] = dataset[split].remove_columns("messages") ############################# # Initialize the GRPO trainer ############################# trainer = GRPOTrainer( model=model, reward_funcs=reward_funcs, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=(dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None), peft_config=get_peft_config(model_args), callbacks=get_callbacks(training_args, model_args), processing_class=tokenizer, ) ############### # Training loop ############### logger.info("*** Train ***") checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics metrics["train_samples"] = len(dataset[script_args.dataset_train_split]) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() ################################## # Save model and create model card ################################## logger.info("*** Save model ***") # Align the model's generation config with the tokenizer's eos token # to avoid unbounded generation in the transformers `pipeline()` function trainer.model.generation_config.eos_token_id = tokenizer.eos_token_id trainer.save_model(training_args.output_dir) logger.info(f"Model saved to {training_args.output_dir}") # Save everything else on main process kwargs = { "dataset_name": script_args.dataset_name, "tags": ["open-r1"], } if trainer.accelerator.is_main_process: trainer.create_model_card(**kwargs) # Restore k,v cache for fast inference trainer.model.config.use_cache = True trainer.model.config.save_pretrained(training_args.output_dir) ########## # Evaluate ########## if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() metrics["eval_samples"] = len(dataset[script_args.dataset_test_split]) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) ############# # push to hub ############# if training_args.push_to_hub: logger.info("Pushing to hub...") trainer.push_to_hub(**kwargs) if __name__ == "__main__": parser = TrlParser((GRPOScriptArguments, GRPOConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() main(script_args, training_args, model_args)