in tensorrtllm/whisper_utils.py [0:0]
def mel_filters(device,
n_mels: int,
mel_filters_dir: str = None) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
)
"""
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
if mel_filters_dir is None:
mel_filters_path = os.path.join(os.path.dirname(__file__), "assets",
"mel_filters.npz")
else:
mel_filters_path = os.path.join(mel_filters_dir, "mel_filters.npz")
with np.load(mel_filters_path) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)