tensorrtllm/whisper_utils.py (192 lines of code) (raw):

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from https://github.com/openai/whisper import os import base64 from functools import lru_cache from pathlib import Path from typing import Optional, Union import numpy as np import torch import torch.nn.functional as F import tiktoken Pathlike = Union[str, Path] N_FFT = 400 HOP_LENGTH = 160 LANGUAGES = { "en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", "pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", "he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", "th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", "yue": "cantonese", } def get_tokenizer(name: str = "multilingual", num_languages: int = 99, tokenizer_dir: str = None): if tokenizer_dir is None: vocab_path = os.path.join(os.path.dirname(__file__), f"assets/{name}.tiktoken") else: vocab_path = os.path.join(tokenizer_dir, f"{name}.tiktoken") ranks = { base64.b64decode(token): int(rank) for token, rank in (line.split() for line in open(vocab_path) if line) } n_vocab = len(ranks) special_tokens = {} specials = [ "<|endoftext|>", "<|startoftranscript|>", *[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]], "<|translate|>", "<|transcribe|>", "<|startoflm|>", "<|startofprev|>", "<|nospeech|>", "<|notimestamps|>", *[f"<|{i * 0.02:.2f}|>" for i in range(1501)], ] for token in specials: special_tokens[token] = n_vocab n_vocab += 1 return tiktoken.Encoding( name=os.path.basename(vocab_path), explicit_n_vocab=n_vocab, pat_str= r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""", mergeable_ranks=ranks, special_tokens=special_tokens, ) @lru_cache(maxsize=None) def mel_filters(device, n_mels: int, mel_filters_dir: str = None) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}" if mel_filters_dir is None: mel_filters_path = os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz") else: mel_filters_path = os.path.join(mel_filters_dir, "mel_filters.npz") with np.load(mel_filters_path) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram( audio: Union[str, np.ndarray, torch.Tensor], n_mels: int, padding: int = 0, device: Optional[Union[str, torch.device]] = None, return_duration: bool = False, mel_filters_dir: str = None, ): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 and 128 are supported padding: int Number of zero samples to pad to the right device: Optional[Union[str, torch.device]] If given, the audio tensor is moved to this device before STFT Returns ------- torch.Tensor, shape = (80 or 128, n_frames) A Tensor that contains the Mel spectrogram """ assert torch.is_tensor(audio), f"Unsupported audio type: {type(audio)}" if device is not None: audio = audio.to(device) if padding > 0: # pad to N_SAMPLES audio = F.pad(audio, (0, padding)) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs()**2 filters = mel_filters(audio.device, n_mels, mel_filters_dir) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 if return_duration: return log_spec, duration else: return log_spec