def forward()

in optimum/amd/ryzenai/modeling.py [0:0]


    def forward(self, **kwargs):
        use_torch = isinstance(next(iter(kwargs.values())), torch.Tensor)
        # converts pytorch inputs into numpy inputs for onnx
        onnx_inputs = self._prepare_onnx_inputs(use_torch=use_torch, **kwargs)

        # run inference
        onnx_outputs = self.model.run(None, onnx_inputs)
        outputs = self._prepare_onnx_outputs(onnx_outputs, use_torch=use_torch)

        # converts output to namedtuple for pipelines post-processing
        return ModelOutput(outputs)