in optimum_benchmark/generators/model_generator.py [0:0]
def input_ids(self):
self.assert_not_missing_shapes(
[
"batch_size",
"sequence_length",
"num_images",
"num_channels",
"height",
"width",
"patch_size",
"temporal_patch_size",
"spatial_merge_size",
"image_token_id",
]
)
text_tokens = self.generate_random_integers(
min_value=0,
max_value=self.shapes.get("vocab_size", DEFAULT_VOCAB_SIZE),
shape=(
self.shapes["batch_size"],
self.shapes["sequence_length"],
),
)
image_tokens = self.generate_constant_integers(
value=self.shapes["image_token_id"],
shape=(
self.shapes["batch_size"],
int(
self.shapes["num_images"]
* self.shapes["height"]
* self.shapes["width"]
/ self.shapes["temporal_patch_size"]
/ self.shapes["spatial_merge_size"]
/ self.shapes["patch_size"] ** 2
),
),
)
return torch.cat((text_tokens, image_tokens), dim=1)