def input_ids()

in optimum_benchmark/generators/model_generator.py [0:0]


    def input_ids(self):
        self.assert_not_missing_shapes(
            [
                "batch_size",
                "sequence_length",
                "num_images",
                "num_channels",
                "height",
                "width",
                "patch_size",
                "temporal_patch_size",
                "spatial_merge_size",
                "image_token_id",
            ]
        )

        text_tokens = self.generate_random_integers(
            min_value=0,
            max_value=self.shapes.get("vocab_size", DEFAULT_VOCAB_SIZE),
            shape=(
                self.shapes["batch_size"],
                self.shapes["sequence_length"],
            ),
        )
        image_tokens = self.generate_constant_integers(
            value=self.shapes["image_token_id"],
            shape=(
                self.shapes["batch_size"],
                int(
                    self.shapes["num_images"]
                    * self.shapes["height"]
                    * self.shapes["width"]
                    / self.shapes["temporal_patch_size"]
                    / self.shapes["spatial_merge_size"]
                    / self.shapes["patch_size"] ** 2
                ),
            ),
        )

        return torch.cat((text_tokens, image_tokens), dim=1)