def __init__()

in optimum_benchmark/backends/pytorch/backend.py [0:0]


    def __init__(self, config: PyTorchConfig):
        super().__init__(config)

        # Threads
        if self.config.inter_op_num_threads is not None:
            self.logger.info(f"\t+ Setting pytorch inter_op_num_threads({self.config.inter_op_num_threads}))")
            torch.set_num_threads(self.config.inter_op_num_threads)

        if self.config.intra_op_num_threads is not None:
            self.logger.info(f"\t+ Setting pytorch intra_op_num_threads({self.config.intra_op_num_threads}))")
            torch.set_num_interop_threads(self.config.intra_op_num_threads)

        # TF32
        if self.config.allow_tf32:
            self.logger.info("\t+ Enabling TF32")
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True

        # Autocast
        if self.config.autocast_enabled:
            self.logger.info("\t+ Enabling automatic mixed precision")
            torch.set_autocast_enabled(True)

            if self.config.autocast_dtype is not None:
                if self.config.device == "cpu":
                    self.logger.info(f"\t+ Setting autocast cpu dtype to {self.config.autocast_dtype}")
                    torch.set_autocast_cpu_dtype(getattr(torch, self.config.autocast_dtype))
                elif self.config.device == "cuda":
                    self.logger.info(f"\t+ Setting autocast gpu dtype to {self.config.autocast_dtype}")
                    torch.set_autocast_gpu_dtype(getattr(torch, self.config.autocast_dtype))
                else:
                    raise ValueError(f"Device {self.config.device} not supported for autocast")