def run_inference_tracking()

in optimum_benchmark/scenarios/energy_star/scenario.py [0:0]


    def run_inference_tracking(self):
        self.logger.info("\t+ Running Inference tracking")

        with self.track(task_name="forward"):
            for i in tqdm(range(0, self.config.num_samples, self.config.input_shapes["batch_size"])):
                inputs = self.backend.prepare_inputs(self.dataset[i : i + self.config.input_shapes["batch_size"]])
                self.backend.forward(inputs, self.config.forward_kwargs)

        if self.config.energy:
            forward_energy = self.energy_tracker.get_energy()
            forward_volume = self.dataset_forward_volume
            self.report.forward.energy = forward_energy
            self.report.forward.efficiency = Efficiency.from_energy(
                forward_energy, forward_volume, unit=FORWARD_EFFICIENCY_UNIT
            )
        if self.config.latency:
            forward_latency = self.latency_tracker.get_latency()
            forward_volume = self.dataset_forward_volume
            self.report.forward.latency = forward_latency
            self.report.forward.throughput = Throughput.from_latency(
                forward_latency, forward_volume, unit=FORWARD_THROUGHPUT_UNIT
            )
        if self.config.memory:
            self.report.forward.memory = self.memory_tracker.get_max_memory()