in optimum_benchmark/generators/model_generator.py [0:0]
def input_ids(self):
self.assert_not_missing_shapes(
["batch_size", "sequence_length", "num_images", "image_seq_len", "image_token_id", "do_image_splitting"]
)
text_tokens = self.generate_random_integers(
min_value=0,
max_value=self.shapes.get("vocab_size", DEFAULT_VOCAB_SIZE),
shape=(self.shapes["batch_size"], self.shapes["sequence_length"]),
)
image_tokens = self.generate_constant_integers(
value=self.shapes["image_token_id"],
shape=(
self.shapes["batch_size"],
self.shapes["num_images"]
* self.shapes["image_seq_len"]
* (5 if self.shapes["do_image_splitting"] else 1),
),
)
return torch.cat((text_tokens, image_tokens), dim=1)