in optimum_benchmark/preprocessors/dataset_preprocessor.py [0:0]
def preprocess_function(examples: Dict[str, Dict[str, np.ndarray]]):
audio = [audio["array"] for audio in examples[scenario_config.audio_column_name]]
sampling_rates = examples[scenario_config.audio_column_name][0]["sampling_rate"]
if "seamless_m4t" in pretrained_config.model_type:
outputs = pretrained_processor(audios=audio, sampling_rate=sampling_rates)
else:
outputs = pretrained_processor(audio=audio, sampling_rate=sampling_rates)
# The processor may add an extra dimension so we squeeze it
for key, value in outputs.items():
if isinstance(value, list) and len(value) == 1:
outputs[key] = value[0]
elif isinstance(value, np.ndarray) and value.shape[0] == 1:
outputs[key] = value.squeeze(0)
return outputs