in optimum_benchmark/backends/pytorch/backend.py [0:0]
def automodel_kwargs(self) -> Dict[str, Any]:
kwargs = {}
if self.config.torch_dtype is not None:
if hasattr(torch, self.config.torch_dtype):
kwargs["torch_dtype"] = getattr(torch, self.config.torch_dtype)
else:
kwargs["torch_dtype"] = self.config.torch_dtype
if self.is_quantized:
kwargs["quantization_config"] = self.quantization_config
if self.config.attn_implementation is not None:
kwargs["attn_implementation"] = self.config.attn_implementation
if self.config.low_cpu_mem_usage is not None:
kwargs["low_cpu_mem_usage"] = self.config.low_cpu_mem_usage
if self.config.device_map is not None:
kwargs["device_map"] = self.config.device_map
if self.config.tp_plan is not None:
kwargs["tp_plan"] = self.config.tp_plan
return kwargs