def load_seq2seq_speech_model()

in optimum/exporters/executorch/tasks/asr.py [0:0]


def load_seq2seq_speech_model(model_name_or_path: str, **kwargs) -> Seq2SeqLMExportableModule:
    """
    Loads a model for speech seq2seq and registers it under the task
    'automatic-speech-recognition' using Hugging Face's `AutoModelForSpeechSeq2Seq`.

    Args:
        model_name_or_path (str):
            Model ID on huggingface.co or path on disk to the model repository to export. For example:
            `model_name_or_path="openai/whisper-tiny"` or `mode_name_or_path="/path/to/model_folder`
        **kwargs:
            Additional configuration options for the model:
                - dtype (str, optional):
                    Data type for model weights (default: "float32").
                    Options include "float16" and "bfloat16".
                - max_hidden_seq_length (int, optional):
                    Maximum hidden sequence length (default: 4096).
                - max_cache_length (int, optional):
                    Maximum sequence length for generation (default: 1024).

    Returns:
        Seq2SeqLMExportableModule:
            An instance of `Seq2SeqLMExportableModule` for exporting and lowering to ExecuTorch.
    """
    device = "cpu"
    batch_size = 1
    max_hidden_seq_length = kwargs.get("max_hidden_seq_length", 4096)
    max_cache_length = kwargs.get("max_cache_length", 1024)

    full_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path).to(device).eval()
    return Seq2SeqLMExportableModule(
        full_model,
        batch_size=batch_size,
        max_hidden_seq_length=max_hidden_seq_length,
        max_cache_length=max_cache_length,
    )