optimum/exporters/executorch/recipes/xnnpack.py (71 lines of code) (raw):
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict, Union
from packaging.version import parse
from tabulate import tabulate
from torch.export import ExportedProgram
from executorch import version as executorch_version
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
from executorch.devtools.backend_debug import get_delegation_info
from executorch.exir import (
EdgeCompileConfig,
ExecutorchBackendConfig,
ExecutorchProgram,
to_edge_transform_and_lower,
)
from optimum.executorch.passes.remove_padding_idx_embedding_pass import RemovePaddingIdxEmbeddingPass
from ..integrations import (
CausalLMExportableModule,
MaskedLMExportableModule,
Seq2SeqLMExportableModule,
)
from ..recipe_registry import register_recipe
@register_recipe("xnnpack")
def export_to_executorch_with_xnnpack(
model: Union[CausalLMExportableModule, MaskedLMExportableModule, Seq2SeqLMExportableModule],
**kwargs,
):
"""
Export a PyTorch model to ExecuTorch w/ delegation to XNNPACK backend.
This function also write metadata required by the ExecuTorch runtime to the model.
Args:
model (Union[CausalLMExportableModule, MaskedLMExportableModule, Seq2SeqLMExportableModule]):
The PyTorch model to be exported to ExecuTorch.
**kwargs:
Additional keyword arguments for recipe-specific configurations, e.g. export using different example inputs, or different compile/bechend configs.
Returns:
Dict[str, ExecutorchProgram]:
A map of exported and optimized program for ExecuTorch.
For encoder-decoder models or multimodal models, it may generate multiple programs.
"""
def _lower_to_executorch(
exported_programs: Dict[str, ExportedProgram],
metadata=None,
) -> Dict[str, ExecutorchProgram]:
et_progs = {}
backend_config_dict = {
"extract_delegate_segments": True,
}
if parse(executorch_version.__version__).base_version > "0.6.0":
backend_config_dict["do_quant_fusion_and_const_prop"] = True
for pte_name, exported_program in exported_programs.items():
logging.debug(f"\nExported program for {pte_name}.pte: {exported_program}")
et_progs[pte_name] = to_edge_transform_and_lower(
exported_program,
partitioner=[XnnpackPartitioner()],
compile_config=EdgeCompileConfig(
_check_ir_validity=False,
_skip_dim_order=True,
),
constant_methods=metadata,
transform_passes=[RemovePaddingIdxEmbeddingPass()],
).to_executorch(
config=ExecutorchBackendConfig(**backend_config_dict),
)
logging.debug(
f"\nExecuTorch program for {pte_name}.pte: {et_progs[pte_name].exported_program().graph_module}"
)
delegation_info = get_delegation_info(et_progs[pte_name].exported_program().graph_module)
logging.debug(f"\nDelegation info Summary for {pte_name}.pte: {delegation_info.get_summary()}")
logging.debug(
f"\nDelegation info for {pte_name}.pte: {tabulate(delegation_info.get_operator_delegation_dataframe(), headers='keys', tablefmt='fancy_grid')}"
)
return et_progs
exported_progs = model.export()
if (
model.config._attn_implementation == "custom_sdpa"
or model.config._attn_implementation == "custom_sdpa_ring_kv_cache"
):
# Sanity check to make sure the exported program contains the custom sdpa operator.
if not any(
node.op == "call_function" and "custom_sdpa" in str(node.target)
for exported_program in exported_progs.values()
for node in exported_program.graph_module.graph.nodes
):
raise ValueError("'custom_sdpa' not found in the graph.")
return _lower_to_executorch(exported_progs, model.metadata)