optimum/exporters/executorch/tasks/asr.py (16 lines of code) (raw):
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import AutoModelForSpeechSeq2Seq
from ..integrations import Seq2SeqLMExportableModule
from ..task_registry import register_task
# NOTE: It’s important to map the registered task name to the pipeline name in https://github.com/huggingface/transformers/blob/main/utils/update_metadata.py.
# This will streamline using inferred task names and make exporting models to Hugging Face pipelines easier.
@register_task("automatic-speech-recognition")
def load_seq2seq_speech_model(model_name_or_path: str, **kwargs) -> Seq2SeqLMExportableModule:
"""
Loads a model for speech seq2seq and registers it under the task
'automatic-speech-recognition' using Hugging Face's `AutoModelForSpeechSeq2Seq`.
Args:
model_name_or_path (str):
Model ID on huggingface.co or path on disk to the model repository to export. For example:
`model_name_or_path="openai/whisper-tiny"` or `mode_name_or_path="/path/to/model_folder`
**kwargs:
Additional configuration options for the model:
- dtype (str, optional):
Data type for model weights (default: "float32").
Options include "float16" and "bfloat16".
- max_hidden_seq_length (int, optional):
Maximum hidden sequence length (default: 4096).
- max_cache_length (int, optional):
Maximum sequence length for generation (default: 1024).
Returns:
Seq2SeqLMExportableModule:
An instance of `Seq2SeqLMExportableModule` for exporting and lowering to ExecuTorch.
"""
device = "cpu"
batch_size = 1
max_hidden_seq_length = kwargs.get("max_hidden_seq_length", 4096)
max_cache_length = kwargs.get("max_cache_length", 1024)
full_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path).to(device).eval()
return Seq2SeqLMExportableModule(
full_model,
batch_size=batch_size,
max_hidden_seq_length=max_hidden_seq_length,
max_cache_length=max_cache_length,
)