in optimum/furiosa/quantization.py [0:0]
def __next__(self):
featurized_samples = None
try:
featurized_samples = []
for _ in range(self.batch_size):
sample = next(self._dataset_iter)
input_list = [[] for i in range(len(sample))]
for i, name in enumerate(sample):
input_list[i] += [sample[name]]
input_list = [
np.array(d, onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[self.input_datatypes[i]])
for i, d in enumerate(input_list)
]
featurized_samples.append(input_list)
except StopIteration:
raise StopIteration
if len(featurized_samples) > 0:
return featurized_samples
raise StopIteration