def __next__()

in optimum/furiosa/quantization.py [0:0]


    def __next__(self):
        featurized_samples = None
        try:
            featurized_samples = []
            for _ in range(self.batch_size):
                sample = next(self._dataset_iter)

                input_list = [[] for i in range(len(sample))]
                for i, name in enumerate(sample):
                    input_list[i] += [sample[name]]
                input_list = [
                    np.array(d, onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[self.input_datatypes[i]])
                    for i, d in enumerate(input_list)
                ]

                featurized_samples.append(input_list)

        except StopIteration:
            raise StopIteration

        if len(featurized_samples) > 0:
            return featurized_samples

        raise StopIteration