def __init__()

in optimum/graphcore/ipu_configuration.py [0:0]


    def __init__(
        self,
        replication_factor: int = 1,
        inference_replication_factor: int = 1,
        gradient_accumulation_steps: int = 1,
        layers_per_ipu: List[int] = [-1],
        inference_layers_per_ipu: Optional[List[int]] = None,
        ipus_per_replica: Optional[int] = None,
        inference_ipus_per_replica: Optional[int] = None,
        optimizer_state_offchip: bool = False,
        replicated_tensor_sharding: bool = False,
        matmul_proportion: Union[float, List[float]] = 0.2,
        inference_matmul_proportion: Optional[Union[float, List[float]]] = None,
        enable_half_partials: bool = True,
        embedding_serialization_factor: Optional[int] = None,
        inference_embedding_serialization_factor: Optional[int] = None,
        serialized_embedding_splits_per_ipu: Optional[List[int]] = None,
        inference_serialized_embedding_splits_per_ipu: Optional[List[int]] = None,
        projection_serialization_factor: Optional[int] = None,
        inference_projection_serialization_factor: Optional[int] = None,
        serialized_projection_splits_per_ipu: Optional[List[int]] = None,
        inference_serialized_projection_splits_per_ipu: Optional[List[int]] = None,
        recompute_checkpoint_every_layer: bool = False,
        device_iterations: int = 1,
        inference_device_iterations: int = 1,
        output_mode: str = "final",
        seed: Optional[int] = None,
        auto_loss_scaling: bool = False,
        executable_cache_dir: str = "",
        explicit_ir_inference: bool = False,
        parallelize_kwargs: Optional[Dict[str, Any]] = None,
        inference_parallelize_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,