optimum/graphcore/__init__.py (49 lines of code) (raw):

# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2021 The HuggingFace Team. All rights reserved. # Copyright (c) 2022 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import poptorch from .ipu_configuration import IPUConfig from .models.bart import PipelinedBartForConditionalGeneration, PipelinedBartForSequenceClassification from .models.bert import ( PipelinedBertModel, PipelinedBertForMaskedLM, PipelinedBertForMultipleChoice, PipelinedBertForPreTraining, PipelinedBertForQuestionAnswering, PipelinedBertForSequenceClassification, PipelinedBertForTokenClassification, ) from .models.convnext import PipelinedConvNextForImageClassification from .models.distilbert import ( PipelinedDistilBertForMaskedLM, PipelinedDistilBertForMultipleChoice, PipelinedDistilBertForQuestionAnswering, PipelinedDistilBertForSequenceClassification, PipelinedDistilBertForTokenClassification, ) from .models.gpt2 import ( PipelinedGPT2ForSequenceClassification, PipelinedGPT2ForTokenClassification, PipelinedGPT2LMHeadModel, ) from .models.hubert import PipelinedHubertForSequenceClassification from .models.lxmert import PipelinedLxmertForQuestionAnswering from .models.mt5 import PipelinedMT5ForConditionalGeneration from .models.roberta import ( PipelinedRobertaForMaskedLM, PipelinedRobertaForMultipleChoice, PipelinedRobertaForQuestionAnswering, PipelinedRobertaForSequenceClassification, PipelinedRobertaForTokenClassification, ) from .models.t5 import ( PipelinedT5ForConditionalGeneration, PipelinedT5EncoderModel, ) from .models.vit import PipelinedViTForImageClassification from .models.wav2vec2 import PipelinedWav2Vec2ForPreTraining from .models.mpnet import PipelinedMPNetModel, PipelinedMPNetForMaskedLM from .pipelines import IPUFillMaskPipeline, IPUTokenClassificationPipeline, pipeline from .trainer import IPUTrainer, IPUTrainerState from .trainer_seq2seq import IPUSeq2SeqTrainer from .training_args import IPUTrainingArguments from .training_args_seq2seq import IPUSeq2SeqTrainingArguments from .version import __version__ # Disable poptorch compiler warnings by default poptorch.setLogLevel("ERR")