optimum/graphcore/models/convnext/modeling_convnext.py (36 lines of code) (raw):

# Copyright (c) 2022 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import poptorch from transformers.models.convnext.modeling_convnext import ConvNextForImageClassification, ConvNextLayer from optimum.utils import logging from ...modeling_utils import PipelineMixin, get_layer_ipu, register from .optimized_convnextlayer import OptimizedConvNextLayer logger = logging.get_logger(__name__) @register(ConvNextForImageClassification) class PipelinedConvNextForImageClassification(ConvNextForImageClassification, PipelineMixin): def parallelize(self): super().parallelize() # Use optimized ConvNextLayer for stage in self.convnext.encoder.stages: for layer in stage.layers: layer.__class__ = OptimizedConvNextLayer logger.info("---------- Device Allocation -----------") logger.info("Embedding --> IPU 0") self.convnext.embeddings = poptorch.BeginBlock(self.convnext.embeddings, "Embedding", ipu_id=0) num_encoder_layers = sum([len(stage.layers) for stage in self.convnext.encoder.stages]) layer_ipu = get_layer_ipu(self.ipu_config, num_encoder_layers) global_layer_idx = 0 for stage_idx, stage in enumerate(self.convnext.encoder.stages): for layer_idx, layer in enumerate(stage.layers): ipu = layer_ipu[global_layer_idx] logger.info(f"Encoder stage {stage_idx}, convnext layer {layer_idx} --> IPU {ipu}") layer = poptorch.BeginBlock(layer, f"Encoder_stage_{stage_idx}_layer_{layer_idx}", ipu_id=ipu) global_layer_idx += 1 last_ipu = self.ipu_config._ipus_per_replica - 1 logger.info(f"Head --> IPU {last_ipu}") logger.info("---------------------------------------") self.convnext.layernorm = poptorch.BeginBlock(self.convnext.layernorm, "LayerNorm", ipu_id=last_ipu) self.classifier = poptorch.BeginBlock(self.classifier, "Classifier", ipu_id=last_ipu) return self def deparallelize(self): super().deparallelize() # Switch back to non-optimized ConvNextLayer for stage in self.convnext.encoder.stages: for layer in stage.layers: layer.__class__ = ConvNextLayer