optimum/graphcore/models/groupbert/groupbert_attention.py (131 lines of code) (raw):

# Copyright (c) 2022 Graphcore Ltd. All rights reserved. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # RANDOM CHANGE import math from typing import Optional, Tuple import torch import torch.nn as nn from transformers.modeling_utils import find_pruneable_heads_and_indices, prune_linear_layer from transformers.models.bert.modeling_bert import BertSelfAttention from optimum.utils import logging logger = logging.get_logger(__name__) class GroupBertFusedSelfAttention(BertSelfAttention): def fused_qkv(self, hidden_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: weights = (self.query.weight, self.key.weight, self.value.weight) combined_weight = torch.cat(weights, dim=0) combined_result = hidden_state @ torch.transpose(combined_weight, -2, -1) biases = (self.query.bias, self.key.bias, self.value.bias) if all((b is not None for b in biases)): combined_bias = torch.cat(biases, dim=0) combined_result += combined_bias elif any((b is not None for b in biases)): raise RuntimeError( "Some attention layers had biases but not all. This is not supported. " "Please enable biases on all Query, Key and Value or none. " f"query.bias = {biases[0] is not None}, " f"key.bias = {biases[1] is not None}, " f"value.bias = {biases[2] is not None}" ) hidden_size = hidden_state.shape[-1] return torch.split(combined_result, hidden_size, dim=-1) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): if encoder_hidden_states is not None: raise RuntimeError("encoder_hidden_states is not supported") elif encoder_attention_mask is not None: raise RuntimeError("encoder_attention_mask is not supported") elif past_key_value is not None: raise RuntimeError("past_key_value not supported") # --- Change: Use fused matmul implementation --- mixed_query_layer, mixed_key_layer, mixed_value_layer = self.fused_qkv(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # ------------------------------------------------ if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key # --- Change: Use reciprocal multiply for speed --- attention_scores = attention_scores * (1.0 / math.sqrt(self.attention_head_size)) # ------------------------------------------------ # Implementation below here is from # https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/modeling_bert.py # ::BertSelfAttention if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class GroupBertSelfOutput(nn.Module): """ GroupBERT self-attention output layer. Similar to BERT, but doesn't have layer norm since its moved to the begining of the module. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states + input_tensor class GroupBertAttention(nn.Module): """ GroupBERT attention module. It is similar in construction to the originalTransformer encoder layer used in BERT, with the only difference being the pre-norm LayerNorm configuration. """ def __init__(self, config, position_embedding_type=None): super().__init__() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.self = GroupBertFusedSelfAttention(config, position_embedding_type=position_embedding_type) self.output = GroupBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # Prenorm normalised_hidden_states = self.LayerNorm(hidden_states) # Self-attention self_outputs = self.self( normalised_hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) # Output projection and residual attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs